
No-code API Integrations with
ECA and HTTP Client Manager

DrupalCamp DEN
January 2023

Brandon Williams
Software Engineer

Hello, my name is Brandon Williams and I’m a software engineer with amazee.io.
Today I’m excited to share with you a way to integrate APIs into your Drupal sites
without having to write any PHP code. In this short presentation I’ll give you an
overview of the ECA and HTTP Client Manager modules, how they are typically used,
and some examples of the how they can be combined.

ECA: Event - Condition - Action

The no-code solution that empowers you to orchestrate
your Drupal site. It’s a powerful, versatile, and
user-friendly rules engine for Drupal 9+.

https://dgo.re/eca
Stable - Works with Drupal ^9.4 || ^10

First on the list is the ECA: event, condition, action module. It’s described as “the
no-code solution that empowers you to orchestrate your Drupal site. It’s a powerful,
versatile, and user-friendly rules engine for Drupal 9+.” It has a stable release which is
covered by the security team and is actively being developed, having gone from its’
first commit to a stable release in just one year.

https://dgo.re/eca

● Replacement for Rules in Drupal 9+
● Reduces the need for custom modules
● Can replace contrib helper modules

○ Redirect after login
○ Computed field
○ Etc

● Separate processor and UI modules
● Requires only Drupal core
● Fast and searchable docs with examples library https://ecaguide.org/

Overview

The most prominent selling point is that it’s a replacement for the rules module, which
still doesn’t have a stable version. But it’s much more than just a drop-in replacement
for rules. ECA is able to take advantage of a much wider set of event and action
plugins in Drupal, allowing you to do things in the UI that would’ve required custom
modules before. Things like form alters and custom cron tasks can now be done
entirely in ECA.

It can also replace some helper modules from contrib like redirect after login,
computed fields, and much more. This can lower the number of contrib modules being
used which makes it easier to keep track of upgrades. I can also imagine a scenario
where a contrib module still doesn’t have a stable release, but your client or
organization requires stable versions in production, so you could potentially replace it
with an ECA model instead.

ECA itself is very lean, it only requires Drupal core and a modeller plugin to get
started. The project page on drupal.org is very detailed and the maintainers have
created a separate documentation site at ecaguide.org which is fast and searchable.

https://ecaguide.org/

● ECA Access
● ECA Base
● ECA Cache
● ECA Config
● ECA Content
● ECA Endpoint
● ECA Form
● ECA Log

Sub-modules

● ECA Migrate
● ECA Misc
● ECA Queue
● ECA Render
● ECA User
● ECA Views
● ECA Workflow

 Plugins are organized into sub-modules so you can enable only what you need.

ECA has several sub modules to organize related events, conditions, and actions. For
example, the ECA User sub module has events for “login of a user” and “cancelling of
a user.” ECA Form has actions for “Form field: set as required” and “Form state: set
redirect.” And the rest of the sub modules pretty self explanatory. All of the available
plugins are documented on ecaguide.org.

So far everything I could think of was already covered and one set of actions that
didn’t exist yet had a patch available within 24 hours of me asking about it.

Let’s look at a small example of what ECA can do. Here I have a content type called
News Article with a text field called “editors notes.” On the left I’m logged in as an
editor and on the right I’m logged in as a regular user. Let’s say I have a requirement
that only editors are allowed to make changes to the editors notes fields. You could
use the field_permissions module to do this, but for most of Drupal 8 it didn’t have a
stable release so the only option was to create a custom module with a
hook_entity_field_access plugin.

Instead I’ll create an ECA model to do this.

* Click image to play video *

I’ve created a new ECA model and first thing I’m going to do is to give it a name of
“Editors Notes” and save. Then I’ll add a new event and in the templates section I’ll
search for the build form event. I name it “Build News Article Form” to be more
descriptive and set the properties so that the event only applies to nodes of type
“news article.”

Then I add an action after the event and I know I want it to disable the editors notes
field. In the templates section I search for “disable” and find an action for “Form field:
set as disabled” where I can give the machine name of the field to disable.

Last thing I want to do is make sure the field isn’t disabled for content editors so I can
add a condition on the action for the users current role, select the Content Editor and
negate the condition and that’s the whole model done.

http://www.youtube.com/watch?v=Aq7r-FFHaYY

With our new ECA model in place you can see that the “editors notes” field is disabled
for the regular user on the right but not for the editor on the left.

HTTP Client Manager

Allows you to manage HTTP clients in a simple and
efficient way by describing web service APIs with
YAML, JSON or PHP files.

https://dgo.re/http_client_manager
Stable - Works with Drupal ^9.4 || ^10

The next module is HTTP Client manager. It allows you to manage HTTP clients in a
simple and efficient way by describing web service APIs with YAML, JSON or PHP
files. It has a stable release which is covered by the security team and has versions
compatible with Drupal 8 through 10.

https://dgo.re/http_client_manager

I think the best way to explain this module is to show you an example implementation.
I decided to describe the Star Wars API, which is available at S W A P I dot dev. It’s a
free and open REST API that allows anyone to get information about the star wars
films. You can query for information about planets, spaceships, vehicles, people,
films, and species.

In this screenshot I’m showing you how querying the API for the person with ID “one”
will return information about Luke Skywalker, including his height, eye color, and other
properties.

To make this API data available to Drupal I’ll create a new client for it using the HTTP
client manager. Each API client gets its own definition and for this example I picked
YAML as the language to use. I’m only showing you a basic version for now, but I’ll
provide a link to a full example later on.

In addition to some meta information like the client name and description, the module
needs to know what request operations can be used and how the responses will be
structured.

Here I’ve defined one request operation called PersonByID. I’ve configured it to use a
GET request, use the “person” url, and required a single parameter called personID.

In order for the HTTP client to return data, you must configure a model with the
expected response structure and link the model to the operation. Here I have a
Person model with ten properties I know will be returned from the API as strings.

After saving the client definition, it’s able to used in Drupal. The HTTP client manager
includes an admin UI to list all the available clients and their commands. This page
lists all the available APIs that are configured with the module. Clicking “view
commands” will give you a list of commands that can be used from that api client.

Here is the list of all commands for the star wars api client. I’ve selected the
PersonByID operation that was defined in YAML. You can see the same information
about the request like the GET method, “people” url, and required “personID”
parameter.

Since most API operations frequently require passing parameters to query the desired
information, the module allows you to make “configured requests” which are basically
a way to “save” those parameters.

Our PersonByID operation requires a personID parameter, so here I’ve created a new
Luke Skywalker request where the personID is hard coded to one. Clicking execute
will query the API with the saved parameter.

And here is the result. You can see that Drupal was able to query the star wars API
about person “one” and return information about Luke Skywalker. This part of the
admin UI is just a convenient way to test the “configured requests,” it doesn’t actually
make use of the data.

● HTTP Client usage in code

● No-code usage with ECA

The main purpose of the HTTP client manager module is to take your API definitions
in YAML and convert them into clients that can be used in PHP. So here is a small
example of how a developer can load the star wars api from the Drupal service
factory and call the “PersonByID” operation to get information about Luke Skywalker.

A recent addition to the module added actions support for all api clients and
configured requests which means they are automatically available for use with ECA.
So now you can use the defined api clients as ECA actions without writing any PHP
code.

Let’s take a look at a few examples.

ECA + HTTP Client Manager

Create a content type for a Star Wars “person”
that automatically fills in data from the Star
Wars API

The first example I have will utilize the star wars api that was just defined. The
scenario I’ve created is that our Drupal site has a “person” content type, and when a
user creates content of that type they are asked to select a person from the star wars
universe. Then when they hit save, Drupal should pull all the information about that
person and save it on the node.

I already showed you how I defined the star wars API in the HTTP client manager
module so now I’ll show you what the ECA model looks like.

I added a “presave content entity” event for set it to fire only for “star wars person”
content types. The presave event will be called for new and updated entities.

I need a person ID to query so I add a “entity: get field value” action and give it the
machine name of the field and the token name it should use.

The next action is a call to the star wars api via the HTTP client and I pass it the pid
token that was made in the previous action.

The client call will save the api results to a private temporary storage so this action
retrieves that data and stores it in a token named “api_person”.

Then I add an “Entity: set field value” action for each field that I want to update, using
the “api_person” token.

* Click image to play video *

Now let’s see the model in action. I create a new Star Wars Person and I’m asked to
select a name. I pick Darth Vader and click save and you can see that the other fields
have been filled in, like Vaders height of 202 cm. If I edit and change the person to
Leia, the information will be updated to match and the height is now 150 cm.

http://www.youtube.com/watch?v=CneFeW43TXU

ECA + HTTP Client Manager

As an administrator, I want to be notified by SMS
when anyone logs into my account, so that I can
react to potential security breaches

The second example I have will utilize a new API from twilio. Let’s pretend you were
tasked with building the following user story: As an administrator, I want to be notified
by SMS when anyone logs into my account, so that I can react to potential security
breaches.

First I’ve created an HTTP client to interface with the Twilio API. Twilio can do a lot of
things in the customer engagement field, but for this example I’m only using one
operation called send SMS. There are four required parameters including twilio
account information, the message to send and the phone number to send it to.

This model has some similarities to the last one, the biggest difference being that I’m
sending data to an API instead of getting data.

The event here is “login of a user” which fires for all users.

I only want to notify admins so I add a “role of current user” condition to check that.

I need a phone number to send the SMS to so I add “Entity: field value is empty”
condition to check if the admin user that just logged in has a phone number set.

The twilio API requires authentication so the next steps are to get that information
from Drupal config storage with two “config: read” actions.

I can load the phone number from the user with a “entity: get field value” action. Since
I started with a user event, the action knows that it should read the
“field_phone_number” field from the user entity.

Correction: You must tell ECA to load the data from the user entity. Do that by
entering “user” in the “Entity” field.

I added some more actions to gather more information, but after that’s all done there
is enough information to send an SMS message. All the parameters that were
required by the API definition can set by passing the tokens that were made from the
previous actions so that twilio knows what to send and who to send it to.

* Click image to play video *

With our ECA model in place I can now login to the site with an admin account. In
background ECA is processing the model and I should get a SMS shortly after logging
in. And here it is: New login to your user “admin” from IP 10.99.99.1

http://www.youtube.com/watch?v=ECNgsH1XvQU

Recap

The combination of ECA and HTTP Client Manager is a powerful
new solution for Drupal site builders and developers

● ECA ● HTTP Client Manager

Powerful processing engine to replace and

improve upon the Rules module for Drupal

Create and manage full featured API clients in a simple

language like YAML or JSON

The examples I’ve shown today are just the tip of the iceberg of what’s possible.
Hopefully I’ve shown you how powerful a processing engine ECA is, not just as a
replacement for the rules module but as a new tool to solve problems that previously
required custom modules; and how you can create and manage full featured api
clients without writing any PHP code by defining them in a simpler language like
YAML.

Developers, and especially site builders, can combine the power of these modules to
build sites faster and better than before.

Thanks for watching!

Brandon Williams
Software Engineer
rocketeerbkw.com

● Star Wars API example https://dgo.re/http_client_swapi
● ECA model examples

https://github.com/rocketeerbkw/eca_http-client-manag
er_examples

Thanks for watching! If you’d like to get in touch with me I keep an updated list of my
social media accounts on my website at rocketeerbkw.com. If you’d like to see the full
star wars api client, I created a module for that on drupal.org. If you’d like to import
the ECA models I used in my examples to play with on your own site I’ve exported
them and put them up on my github.

I’d like thank the organizers for having me and hope y’all enjoy the camp!

https://dgo.re/http_client_swapi
https://github.com/rocketeerbkw/eca_http-client-manager_examples
https://github.com/rocketeerbkw/eca_http-client-manager_examples

