
Brandon Williams
Amazee Labs

Introduction to React Design Patterns

Before We Begin

React

Declarative

Flexible

Library

Design Patterns

Design patterns are formalized best practices that the
programmer can use to solve common problems
when designing an application or system.

But these are just my opinions.

Brandon Williams
Lead Developer

Amazee Labs

image

Drupal 8 sites since Alpha

React projects since 2016

SPAs, Interactive Touch Displays, Embeddable

Widgets, Improved Filtered Search

GraphQL Module

Design
Patterns

Presentational/Container Components

Presentational Container

How things look

Little to no state

Receive all data via props

Functional component

Same use case as Twig templates

How things work

Render presentational and container

components

Provide data and behavior

Stateful

Presentational/Container Components

Presentational Container

const Commentlist = comments => (

 {comments.map(

 ({ body, author }) =>

 {body}-{author}

)}

)

class CommentListContainer extends

React.Component {

 componentDidMount() {

 loadComments("/my-comments.json")

 }

 render() {

 return <CommentList

 comments={this.state.comments}

 />;

 }

}

Presentational/Container Components

Why? Difficulty

Separation of concerns

Reusable

Testable

Style guides

Stateless Components + Functional Programming

Pure functions

No side-effects or shared state

Declarative

Composition over inheritance

Immutable state

const SubmitButton = ({

 label,

 onSubmit,

 disabled,

}) => (

 <input

 type="submit"

 disabled={disabled}

 value={label}

 onClick={onSubmit}

 />

);

Stateless Components + Functional Programming

Why? Difficulty

Declarative programming for declarative

library

Immutability helps avoid render errors

Easier to reason about component

dependencies

Fun vocabulary: map, reduce, functor,

monad, currying

Higher Order Components/Functions

A function that returns a

component/function

Wraps functional components

Recompose library for React integration

Same use case as PHP Traits or OO

Decorator pattern

const withHideLoading = (BaseComponent) =>

 (props) => (

 {props.loading &&

 <BaseComponent />}

)

const ButtonWithLoading =

withHideLoading(<SubmitButton

 label="Submit"

/>)

<ButtonWithLoading loading={true} />

Higher Order Components/Functions

const withDisabledState = withState(

 'disabled',

 'setDisabled',

 false);

const withDisabledOnSubmit =

withHandlers({

 onSubmit: ({ setDisabled }) =>

 () => setDisabled(true),

})

const SubmitButton = ({

 label,

 onSubmit,

 disabled,

}) => (<input

 type="submit"

 disabled={disabled}

 value={label}

 onClick={onSubmit}

 />);

const ButtonWithDisable = compose(

 withDisabledState,

 withDisabledOnSubmit,

)(<SubmitButton label="submit" />)

Higher Order Components/Functions

Why? Difficulty

Keep code DRY

Keep functional components pure

Separation of concerns

Render Props/Function as Children

Alternative to HoC Difficulty

const HideLoading = (props) => {

 if (props.loading) {

return null;

 }

 return this.props.render();

}

<HideLoading

 loading{true}

 render={() => (

<SubmitButton label="submit" />

)}

/>

Flux

DifficultyPattern for managing data

All state flows in one direction

All state managed in the store

State changes cause re-renders

Redux

CFP Open! 2018.texascamp.org

Join us for
contribution sprints

Friday, April 13, 2018

9:00-18:00
Room: 103

Mentored
Core sprint

First time
sprinter workshop

General
sprint

#drupalsprint

9:00-12:00
Room: 101

9:00-18:00
Room: 104

Questions?
Brandon Williams

@rocketeerbkw

